Neutrons:
"Neutrons also degrade materials; bombardment of materials with neutrons creates collision cascades that can producepoint defects and dislocations in the materials. At high neutron fluences this can lead to embrittlement of metals and other materials, and to swelling of some of them. This poses a problem for nuclear reactor vessels, and significantly limits their lifetime (which can be somewhat prolonged by controlled annealing of the vessel, reducing the number of the built-up dislocations). Graphite moderator blocks are especially susceptible to this effect, known as Wigner effect, and have to be annealed periodically; the well-known Windscale fire was caused by a mishap during such an annealing operation."
In order to achieve an effective fission chain reaction, the neutrons produced during fission must be captured by fissionable nuclei, which then split, releasing more neutrons. In most fission reactor designs, the nuclear fuel is not sufficiently refined to be able to absorb enough fast neutrons to carry on the fission chain reaction, due to the lower cross section for higher-energy neutrons, so a neutron moderator must be introduced to slow the fast neutrons down to thermal velocities to permit sufficient absorption. Common neutron moderators include graphite, light water and heavy water. A few reactors (fast neutron reactors) and all nuclear weapons rely on fast neutrons. This requires certain changes in the design and in the required nuclear fuel. The element beryllium is particularly useful due to its ability to act as a neutron reflector or lens. This allows smaller quantities of fissile material to be used and is a primary technical development that led to the creation ofneutron bombs.
Wikipedia
Welcome!
A blog interested in the truth, however uncomfortable it might be.
No comments:
Post a Comment